AP Calculus AB: Section I, Part A

- The graph of a twice-differentiable function f is shown in the figure above. Which of the following is true?
 - (A) f(1) < f'(1) < f''(1)
 - (B) f(1) < f''(1) < f'(1)
 - (C) f'(1) < f(1) < f''(1)
 - (D) f''(1) < f(1) < f'(1)
 - f''(1) < f'(1) < f(1)
 - 18. An equation of the line tangent to the graph of $y = x + \cos x$ at the point (0,1) is
 - (A) y = 2x + 1
- (B) y = x + 1
- (C)
- y = x 1(D)
- (E) y = 0
- 19. If $f''(x) = x(x+1)(x-2)^2$, then the graph of f has inflection points when x = x
 - (A) -1 only (B) 2 only
- (C) -1 and 0 only
- (D) -1 and 2 only (E) -1, 0, and 2 only
- 20. What are all values of k for which $\int_{-3}^{k} x^2 dx = 0$?
 - (A) -3
- (C)
- -3 and 3
- (E) -3, 0, and 3

- 21. If $\frac{dy}{dt} = ky$ and k is a nonzero constant, then y could be
- (B) $2e^{kt}$

- (C) $e^{kt} + 3$ (D) kty + 5 (E) $\frac{1}{2}ky^2 + \frac{1}{2}$

AP Calculus AB: Section I, Part A

- 22. The function f is given by $f(x) = x^4 + x^2 2$. On which of the following intervals is f increasing?
 - (A) $\left(-\frac{1}{\sqrt{2}}, \infty\right)$
 - (B) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
 - (C) $(0,\infty)$
 - (D) $\left(-\infty,0\right)$
 - (E) $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$

AP Calculus AB: Section I, Part A

23. The graph of f is shown in the figure above. Which of the following could be the graph of the derivative of f?

(A)

(B)

(C)

(D)

(E)

- The maximum acceleration attained on the interval $0 \le t \le 3$ by the particle whose velocity is given by $v(t) = t^3 - 3t^2 + 12t + 4$ is
 - (A) 9
- (B) 12
- (C) 14
- (D) 21 ·
- (E) 40
- 25. What is the area of the region between the graphs of $y = x^2$ and y = -x from x = 0 to x = 2?
 - (A) $\frac{2}{3}$
- (B) $\frac{8}{3}$

- (E) $\frac{16}{3}$

x	0	1	2
f(x)	1	k	2

- The function f is continuous on the closed interval [0,2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0,2] if k =
 - (A) 0
- (B) $\frac{1}{2}$

- (E) 3
- 27. What is the average value of $y = x^2 \sqrt{x^3 + 1}$ on the interval [0,2]?
 - (A) $\frac{26}{9}$
- (B) $\frac{52}{9}$ (C) $\frac{26}{3}$
- (D) $\frac{52}{3}$
- (E) 24

- 28. If $f(x) = \tan(2x)$, then $f'\left(\frac{\pi}{6}\right) =$

 - (A) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) 4
- (E)